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A B S T R A C T

This study examines the relatively high-resolution MultiSpectral Instrument (MSI) onboard Sentinel-2A and 2B
for generating bathymetric maps through a ratio transform model in South Florida (United States). Atmospheric
correction of imagery is implemented though ACOLITE software, providing accurate performance and con-
sistency over different Sentinel-2A/B scenes and three different study sites. Vertical calibration uses 5–10 points
collected from digital charts, independent of lidar surveys, which are used for validation and error analysis.
Satellite-Derived Bathymetry (SDB) has Median Absolute Error (MedAE) of 0.5m in West Palm Beach (at depths
ranging between 0 and 18m, limit of lidar survey for validation), 0.4 m in Key West (0–5m), and 0.22m in Dry
Tortugas (0–6m), in conditions with low turbidity. Accurate bathymetry mapping can be accomplished with
both sensors over environments with varying water transparency conditions, with the advantage of a fast,
flexible, and economical solution. The 10-m MSI can capture small-scale features, such as tidal channels, straits
relevant to navigation or steep slopes. While the least error is achieved by calibrating each image separately, a
generic calibration produces only a moderately greater error with MedAE still ∼1m, indicating the robustness of
the approach. The research highlights the great potential of the 5-day revisit, suggesting that the twin Sentinel-2
mission of the Copernicus programme may enhance SDB to leverage its use for several operational purposes,
particularly in remote and inaccessible regions of the world.

1. Introduction

Accurate and high-resolution information on bathymetry is critical
for a wide range of coastal purposes such as navigation, dredging
planning, environmental management, aquaculture, and mapping
benthic habitats. In addition, bathymetric surveys are increasingly
important for understanding the effects of climate change on the en-
vironment, alerting scientists to areas with potential for erosion, as well
as impacts of sea-level rise and subsidence (Culver et al., 2010). Tra-
ditional means of determining water depth include the conventional
vessel-based multi-beam sonar or active non-imaging airborne lidar
bathymetry (ALB). Sonar surveys generate precise depths at sampling
points that meet hydrographic surveys standards. (Guenther, 2011);
however, they are constrained by access, speed, deployment cost and
efficiency in shallow waters. ALB allows for the acquisition of safe,
rapid and reasonably accurate high-resolution bathymetric information
in moderately clear nearshore waters, especially in shallow water
where multi-beam is least effective. While Satellite-Derived Bathymetry
(hereinafter SDB) does not have the accuracy of sonar or lidar, it can
provide wide swaths, low-cost repeated coverage, and easy access to

remote locations for reconnaissance mapping (Robinson et al., 2000;
Gao, 2009). SDB has recently emerged as another powerful tool to help
the National Oceanic and Atmospheric Administration (NOAA) address
the public expectation for rapid updates to nautical charts in order to
insure safe navigation in United States waters (Pe’eri et al., 2012).

Since the first studies in the late 1970s, a number of researchers
have attempted to determine comprehensive regional SDB with several
passive systems (typically Landsat but extended to any sensor) to
varying degrees of success (Lyzenga, 1981; Benny and Dawson, 1983;
Philpot, 1989; Maritorena et al., 1994). Over these last decades, the
suitability of remotely sensed satellite data for mapping bottom depth
has been confirmed and refined with the successive advancements in
optical platform resolution and SDB models (Gao, 2009; Dekker et al.,
2011; Bramante et al., 2013). Studies have reported a reduction in error
from approximately 30% from multispectral data (Philpot, 1989) to less
than 15% from hyperspectral aerial data (Brando et al., 2009). When
using multispectral imagery, optically based approaches have been
regularly used to estimate bottom depth from the optical properties of
water and underwater reflectance (Lyzenga, 1981; Philpot, 1989;
Stumpf et al., 2003; Minghelli-Roman et al., 2009). Various studies
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have used analytical approximations of the radiative transfer model for
light propagation in water to determine depth (Benny and Dawson,
1983; Clark et al., 1988; Lyzenga et al., 2006: Dekker et al., 2011).
Optimization of semi-analytical algorithms has been developed with
hyperspectral imagery, allowing determination of many water con-
stituent concentrations and depth simultaneously (Lee et al., 1999,
2007). These optimization solutions have also been applied to multi-
spectral data to solve simultaneously for depth, benthic albedo, cover
and water optical properties (Hamylton et al., 2015; Hedley et al.,
2018), but they require the parameterization of reflectance spectra of
main benthic habitats, basic information about water properties, and
extremely accurate atmospheric correction. Current atmospheric cor-
rection methods do not consistently produce sufficiently accurate water
reflectance, which makes them inefficient from an operational or re-
cursive monitoring point of view (Dekker et al., 2011; Hedley et al.,
2018). These methods are also more complex to implement and can be
computationally slower.

Several SDB experiments have been chiefly applied to oligotrophic
waters or have been modified to incorporate additional in-situ data
(Lafon et al., 2002; Gao, 2009; Kao et al., 2009; Minghelli-Roman et al.,
2009). Many of these methods depend on either extensive field data
information (limited or nonexistent in most cases) or research sensors
(like hyperspectral), which are not practical for routine application. In
2003, Stumpf et al. published a model for determining bathymetry over
shallow reefs and atolls applying a ratio transform instead of a linear
transform. The method was designed to support routine mapping in
areas with extremely limited calibration data. Recent studies exhibited
the great potential of this model for bathymetry mapping in several
regions worldwide (e.g. Halls and Costin, 2016; Islam et al., 2016;
Chybicki, 2017). Kabiri (2017b) demonstrated that the ratio transform
method has more proficiency in determining depth values in coastal
water bodies with a high variation in bottom types, whereas using the
linear transform methods may lead to less accurate results. In addition,
Hamylton et al. (2015) developed a comparison of the band ratio and
optimization approaches for estimating SDB in Australia revealing that
these methods yield very similar estimates overall, and both were
subject to the same depth limitations mainly associated with the site
water characteristics.

The application of high spatial resolution imagery such as IKONOS,
QuickBird and the family of WorldView satellites can offer accuracy
and a detailed monitoring (Stumpf et al., 2003; Eugenio et al., 2015;
Hamylton et al., 2015; Halls and Costin, 2016). Nevertheless, these
observations are quite limited in areal coverage, frequency, and cost.
On the contrary, the free of charge Landsat (30m) imagery can be
utilized to yield reliable and updated SDB, especially since the launch of
Landsat-8 in 2013 (Pe’eri et al., 2014; Pacheco et al., 2015; Kabiri,
2017a). More recently, the European Space Agency (ESA) launched the
Sentinel-2 twin mission as part of the Copernicus programme. The two
operational satellites (A/B) offer a potential 5-day revisit time with
their Multi Spectral Imagers (MSI) at 10, 20 and 60m spatial resolution.
While this mission was intended for global monitoring of land, it has
already led to investigation of nearshore and inland water parameters
(Toming et al., 2016; Vanhellemont and Ruddick, 2016; Martins et al.,
2017; Caballero et al., 2018). Compared to Landsat-8, Sentinel-2 has
three additional spectral bands within the near infrared (NIR) region
(red-edge bands), enabling further insights into water quality ex-
amination over optically complex coastal/inland waters such as chlor-
ophyll-a or turbidity (IOCCG, 2000; Ruddick et al., 2016; Vanhellemont
and Ruddick, 2016; Pahlevan et al., 2017b). A study by Pahlevan et al.,
(2017a, b) confirmed MSI radiometric performances are comparable to
those of the Lansdat-8 Operational Land Imager (OLI), highlighting the
high-quality products that can be derived from Sentinel-2. Furthermore,
recent works already demonstrated the feasibility of Sentinel-2A to map
bottom depth with several degrees of success (Chybicki, 2017; Kabiri,
2017b; Traganos and Reinartz, 2017; Hedley et al., 2018 ; Casal et al.,
2019). As such, the potential to generate continuous bathymetry from

Sentinel-2 has become a topic of increased interest for coastal mon-
itoring in the framework of the Copernicus programme. Therefore, the
goal of this study was to investigate the performance of the SDB method
with both Sentinel-2A and 2B for retrieving bathymetry in nearshore
waters with some turbidity. The paper focused on the application of an
atmospheric correction scheme and the vertical calibration procedure
to assess the quality of performance and repeatability over different
scenes and three study sites in United States.

2. Materials and methods

2.1. Study region

The areas under investigation included three specific study sites in
South Florida (SF): Dry Tortugas, Key West, and West Palm Beach
(Fig. 1). For method development and testing, these regions were se-
lected as we had available updated lidar data for comparison and error
analysis. In addition, the locations were chosen based on the general
conditions of low to medium turbidity, with lowest turbidity levels
occurring in the Tortugas segment (Jones and Boyer, 1998).

The Dry Tortugas (24° 38’ 0’’ N and 82° 55’ 1’’ W, Fig. 1) is a small
archipelago of coral islands located in the Gulf of Mexico at the end of
the Florida Keys. The islands, with their surrounding waters, reefs and
submarine banks, constitute the Dry Tortugas National Park, which is
part of the Everglades & Dry Tortugas Biosphere Reserve, established by
UNESCO in 1976 under its Man and the Biosphere Programme. Existing
habitats have been classified based on habitat relief and patchiness
describing nine hard-bottom, soft-sediment and coral reef habitats en-
countered from 1 to 33m depth (Franklin et al., 2003).

Key West is an island in the Straits of Florida, at the southernmost
tip of the Florida Keys (24° 33′ 25″ N and 81° 47′32″ W, Fig. 1). The
Florida Keys are a limestone archipelago with a total land area of
356 km2 and are one of the most touristic regions in the United States.
Much of the population is concentrated in a few areas of higher density,
such as the city of Key West, which has 32% of the entire population of
the Keys. Strong gradients in water quality have been identified ac-
cording to distance from shore, with offshore waters being the clearest

Fig. 1. Location of the study regions in South Florida coastal waters (United
States).
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and most oligotrophic (LaPointe and Clark, 1992; Barnes and Hu,
2013). The generally shallow water depth (0–6m) presents the poten-
tial for frequent resuspension of suspended solids. The basins also have
varying substrates and (carbonate) sediment types (Fourqurean et al.,
1992), which affect the nature and concentration of suspended solids in
the water column. The diverse substrates vary from sand to pavement,
with cover that includes various densities of seagrass (from dense to
bare bottoms) and some coral patches.

West Palm Beach is a National Historic Landmark located on the
Palm Beach barrier island, in SE Florida (26° 42′ 14″ N and 80° 02′08″
W, Fig. 1). The eastern Florida Shelf is extremely narrow (3–4 km) and
merges southward with the Florida Reef Tract, which is most extensive
and best developed offshore from the Florida Keys. The study area
corresponded to a coastal strip in central eastern Palm Beach County.
Portions of the Florida east coast differ markedly in shoreline config-
uration and are influenced by the tectonic setting of the continental
margin, regional bedrock geology, nearshore sediment supply, and re-
lative sea-level fluctuations during the Quaternary (Duane and
Meisburger, 1969; Benedet et al., 2004). The geomorphology of this
area consisted of a wide range of bottom types that included coral reefs,
hard rounds (rock reefs), and sedimentary features including bar and
trough systems as well as sandy bottom types (Finkl and Warner, 2005).

2.2. Satellite data: Sentinel-2A/B mission from the Copernicus programme

ESA has developed the Sentinel fleet to meet the operational needs
of the Copernicus programme, the European Commission's Earth
Observation Programme. Each Sentinel mission is based on a con-
stellation of two satellites to fulfill revisit and coverage requirements,
providing robust data sets for Copernicus services. In this study,
Sentinel-2A and 2B twin polar-orbiting satellites were used (European
Space Agency, 2015). Sentinel-2A was launched on 23 June 2015 and
Sentinel-2B followed on 7 March 2017 with Sentinel-2A first becoming
available in this area in October 2015, and routine collection of data at
10-day repeat a year later. The radiometric resolution of MSI is 12-bit,
and spectral and spatial characteristics of the bands used in this study
are shown in Table 1. Sentinel-2 scenes for SF region were downloaded
from the Sentinel's Scientific Data Hub. These images corresponded to
Level-1C (L1C) products processed by the Payload Data Ground Seg-
ment (PDGS), which means data were radiometrically and geome-
trically corrected Top Of Atmosphere (TOA) products. The corrections
included orthorectification and spatial registration on a global re-
ference system (combined UTM projection and WGS84 ellipsoid) with
sub-pixel accuracy (European Space Agency, 2015). In this study, the
images of zone 17 in Dry Tortugas (sub-tile RLH), Key West (sub-tile
RMH), and West Palm Beach (sub-tile RNK) were used, with different
acquisition plans for each region. Only scenes with low cloud coverage
and sun glint were selected for further analysis. The analysis focused on
scenes before Hurricane Irma (September 2017) since intense re-
suspension and currents may have modified shallow seabed

morphology, confounding comparison and validation with the lidar
surveys (all collected before September 2017). However, additional
imagery after Irma was selected for examination of Sentinel-2A and 2B
comparability since the first images offered with Sentinel-2B in this
region were after the hurricane.

Sentinel-2 images were processed to Level-2A (L2A) by using the
robust ACOLITE processor developed by the Royal Belgian Institute of
Natural Sciences (RBINS), which supports free processing, specifically
for aquatic applications, of both Landsat-8 and Sentinel-2 (Ruddick
et al., 2016; Vanhellemont and Ruddick, 2016). Realistic spatial pat-
terns of MSI-derived marine reflectance have been retrieved with
ACOLITE allowing proper evaluation of potential applications in coastal
and inland waters (Vanhellemont and Ruddick, 2016; Martins et al.,
2017). ACOLITE products corresponded to Remote sensing reflectance
(Rrs, 1/sr) in all visible and Near-infrared (NIR) bands resampled to
10m pixel size. Given the conditions of moderate turbidity in the areas
under investigation, a combination of the NIR and Short Wave Infrared
(SWIR) channels was used for atmospheric correction in ACOLITE. We
selected the NIR/SWIR (0.8/1.6 μm) bands for the aerosol correction
with a user defined epsilon value (maritime aerosol) recommended in
low to moderate turbidity waters. This strategy has been shown to
significantly improve the quality of the products by minimizing the
influence of NIR/SWIR instrument noise (Pahlevan et al., 2017b).
ACOLITE outputs showed some specular noise (speckle noise) and inter-
pixel variability so a spatial filter (median filter 3x3) was conducted on
the bands in order to remove or diminish this effect.

2.3. In-situ data: airborne lidar bathymetry

The National Geodetic Survey (NGS) collected topographic and
bathymetric (topobathy) airborne lidar bathymetry (ALB) in Key West
(April 2016), West Palm Beach (February 2017), and Dry Tortugas
(October 2016). These point cloud data were collected using the Riegl
VQ-880-G sensor, which provided high-resolution bathymetric data in
nearshore waters. The Riegl VQ-880-G used a green laser that operated
in a circular scan pattern, which could penetrate shallow (clear) water
to the seafloor. The high-density point data was combined with GPS and
other positional data to create precise 3D topobathy elevation models.
NGS used coastal elevation data to map the mean high-water shoreline,
which is considered the nation's official shoreline. These high-resolu-
tion observations (1m spatial resolution) were selected as the reference
data set in the well-controlled study sites and compared to SDB pro-
ducts. ALB data in Key West corresponded to optically shallow waters
ranging from 0 up to 8m. This region contained several tidal and
dredged channels and bottom irregularities that were detectable with
ALB, allowing some examination of the MSI capacity to map these ir-
regular bottom types. In West Palm Beach, depths surveyed ranged
from 0 up to 18m, and in the Dry Tortugas region, mapped depths
ranged from 0 to 8m. All ALB data sets were referenced to the Mean
Lower Low Water (MLLW) and gridded at the MSI's image resolution
(10m) via arithmetic averaging.

2.4. Satellite-Derived Bathymetry estimation

One common method for deriving bathymetry from satellite ima-
gery is a nonlinear solution using a band ratio calculation (Stumpf et al.,
2003). The model uses a ratio of log-transformed water reflectance of
bands having different water absorptions, so the ratio of reflectances
will change with depth. The log-transform accounts for the exponential
decrease of light with depth. Blue light (440–500 nm) can penetrate to
at least 25m depth, and thus provides the optimal reference band for
extracting depth information against the more rapidly absorbed green
or red light. As red attenuates faster than green it may provide more
information in water shallower than 6–8m. Recent works with the in-
troduction of WorldView-2's higher resolution coastal blue band
(400–450 nm) have shown that accurate bathymetric estimations could

Table 1
Sentinel-2 spectral band settings used in this study indicating central wave-
length, width, spatial resolution, and associated Signal to Noise ratio (SNR) at
reference radiance (see Drusch et al., 2010).

Sentinel-2 (MSI)

Central wavelength (nm) Spatial resolution (m) Bandwidth (nm) SNR

B01 444 60 20 129
B02 490 10 65 154
B03 560 10 35 168
B04 664 10 30 142
B05 704 20 15 117
B06 740 20 15 89
B07 783 20 20 105
B8A 865 20 20 72
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be achieved up to 20m and deeper (Bramante et al., 2013; Jawak et al.,
2015; Khondoker et al., 2016) as well as with Landsat-8 (Kabiri,
2017a). The coastal blue band is least absorbed by water and designed
to improve feature classification and bathymetry measurements (Staff,
2013), at least in waters with low colored dissolved organic matter.
However, Kanno et al. (2014) suggested this band was of lower per-
formance although it was intended for use in SDB. Given that Sentinel-2
has two blue bands (Table 1), the model was tested using coastal blue
B01 (hereinafter 445 nm) and blue B02 (hereinafter 490 nm) as the
numerator (Equation (1)). Therefore, we used the ratio of 445 nm or
490 nm ( i) to 560 nm ( j) bands, and the ratio of 445 nm or 490 nm
( i) to 664 nm ( j) bands

= m mSDB pSDB1 0 (1)

=where pSDB ln(n Rrs( ))
ln(n Rrs( ))

i

j

where pSDB is the relative or “pseudo” depth from satellite (di-
mensionless), SDB is the satellite-derived depth (meters), referred to as
either SDBgreen for j =560 nm, or SDBred for j =664 nm, m1 and
m0 (scale and offset, respectively) are tunable constants to linearly
transform the algorithm results to the actual depth in a chart, and
n=1000 is a fixed constant for all areas to assure that both logarithms
will be positive under any condition and that the ratio will produce a
linear response over the retrievable water depth.

2.5. Vertical tuning

After calculating pSDB, the first step was to tune the algorithms by
means of the vertical referencing to linearly transform the results to the
actual depth defining the scale and offset (m1 and m0, respectively;
Equation (1)). As this model has only two coefficients that require
tuning, few calibration points are needed (Stumpf et al., 2003). To
further test the robustness of the method, depths were obtained from

the chart soundings, not from the lidar used for validation. Control
points were extracted from NOAA charts. Charts corresponded to
11441-11442 for Key West (the depth range of the calibration points
was 0–5m), 11472-11467 for West Palm Beach (the depth range of the
calibration points was 0–21m), and 11434-11438 for Dry Tortugas (the
depth range of the calibration points was 0–8m). This procedure is
significant for evaluating a precise approach that can be replicated in
remote areas or regions without requirement of high-resolution
bathymetry. Five to ten control points were identified from the charts,
defining stable points in low gradient areas, and avoiding areas that
could have been modified. Each scene and algorithm were tuned se-
parately, with correlation calculated as a quality indicator. A single
calibration for all scenes was examined also in West Palm Beach. The
coefficients were retrieved testing both 445 nm and 490 nm bands. The
pSDB was then scaled to SDB with linear regression between the re-
ference chart bathymetry and pSDB. South Florida coastal waters cor-
responded to a micro-tidal system (https://tidesandcurrents.noaa.gov/
). The m0 coefficient provides an adjustment to the reference bathy-
metric datum in charts (MLLW), implicitly correcting for tide (water
level).

3. Results

3.1. Validation of Satellite-Derived Bathymetry products

In order to verify MSI capacity to generate bottom maps at 10m and
evaluate its performance in relation to high-resolution lidar data, an
analysis of the two models SDBred and SDBgreen compared to ALB
observations was performed. In this section, only Sentinel-2A satellite
(before Hurricane Irma, September 2017) was used for validation
purposes and the results were organized for each study site and SDB
model: both SDBred and SDBgreen in West Palm Beach and SDBred
over the shallow regions of Dry Tortugas and Key West.

Fig. 2. Scatterplot between ALB and MSI-derived SDBgreen using band 445 nm for the West Palm Beach scenes acquired on (a) 2 March 2016, (b) 27 November 2016,
(c) 7 December 2016, and (d) 6 January 2017. Dark dotted lines indicate 1:1 lines.
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Fig. 3. (a) Scatterplot between MSI-derived
SDBgreen using band 490 nm against SDBgreen
using band 445 nm for the Wet Palm Beach scene
acquired on 2 March 2016, where dark dotted line
indicates 1:1 line, and (b) Comparison of ALB against
total error between SDBgreen using both blue bands
(SDBgreen445-SDBgreen490). (For interpretation of
the references to color in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 4. (a) ALB in West Palm Beach indicating transects P1 and P2, (b) SDBgreen on 7 December 2016, (c) benthic habitat information corresponding to the
Integrated Reef Map Project by the Florida Fish and Wildlife Conservation Commission, (d) and (f) detailed profiles of SDBgreen for P1 and P2, respectively, (e) and
(g) profile of the blue band Rrs490 nm for P1 and P2, respectively; black line is ALB and the different colored lines correspond to the four MSI images, (h) SDBred on 7
December 2016, (i) and (j) profiles of SDBred for P1 and P2, respectively. Data in the maps is presented as colour coded depths ranging from 0 to 20m.
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3.1.1. West Palm Beach
The first region corresponded to West Palm Beach (Figs. 1–4), which

was characterized by a relatively constant slope in the ALB depths
ranging from 0 to up to 18m (Fig. 4a). Four images were selected under
clear-sky conditions acquired on 2 March, 27 November, and, 7 De-
cember 2016, and 6 January 2017. Each scene was tuned separately
using 445 nm or 490 nm bands in the algorithm (see calibration in
Table 2). Comparison of SDB and ALB (Fig. 2) shows SDBgreen445
(using band 445 nm) could consistently retrieve depths to at least 18m
(limit of the ALB survey) with Median Absolute Error (hereinafter
MedAE) less than 1m and specifically< 0.5m on 27 November 2016.
To look at different depth ranges the bias and MedAE were computed as
statistics (Seegers et al., 2018) for 0–18m and then partitioned to
0–5m, 5–10m and 10–18m (Table 3 for band 445 nm, and Table 4 for
band 490 nm). The error was linear over most of the range and depths
up to 18m were estimated with high consistency and accuracy for the
different days. Minimum MedAE (<0.3m) was found for depths ran-
ging between 10 and 18m. Generally, higher errors (∼1m) were found
for depths 0–5m, as expected given that SDBgreen is more sensitive in
deeper water. Similar performance was obtained with both blue bands,
although slightly lower error for band 445 nm (Table 3) than for band
490 nm (Table 4). An additional exercise was accomplished comparing
SDBgreen using band 490 nm against SDBgreen using band 445 nm for
the scene acquired on 2 March 2016 (Fig. 3), indicating minimal dif-
ferences with MedAE of 0.35m and bias of −0.1m.

Cross-shore profiles show the similarity between SDBgreen (Fig. 4b)
and ALB (Fig. 4a) across the four scenes (Fig. 4d–f) and over different
bottom types (Fig. 4c). Shallower than 2–3m SDBgreen become un-
reliable, otherwise depth retrievals were possible up to the limit of lidar
data at 18m. On 2 March 2016 (profile P1, Fig. 4d) the depth was
underestimated between 500 and 1000m distance from shore due to
higher turbidity levels. While SDBgreen did not retrieve reliably SDB in
less than 2–3m, SDBred (Fig. 4h) provided excellent estimation in those
depths (Fig. 4i and j). SDBred measured to a maximum depth of about
5–6m (see Tables 3 and 4 for statistics).

3.1.2. Key West
The second region of study was Key West, which has dynamic

conditions that lead to moderately heterogeneous turbidity mainly in
shallow areas (Jones and Boyer, 1998). The image on 8 February 2017,
selected as the clearest scene in terms of clouds, sun glint, and turbidity,
performed consistently over complex bathymetry and bottom types
(Fig. 5). Because most of the ALB data ranged from 0 to 6m (Fig. 5a),
SDBred was used to derive the bathymetry (see Table 2 for calibration
parameters). Errors were below 0.45m using band 445 nm
(bias= 0.13m, MedAE=0.42m) or band 490 nm (bias= 0.27m,
MedAE=0.39m) in this area of complex bottom forms. Spatial fea-
tures were well represented; the SDBred captured the tidal channels, as
can be seen in the northern part (Fig. 5b). Similar to the West Palm
Beach study, the depth penetration limit for SDBred was ∼5m for
clearest waters (Fig. 4i and j). At depths greater than 5m, SDBred began
to fail, leading to underestimation, clearly observed at the top of the
image. Most vertical features were well reproduced in the shallow
basin, where bathymetry generated by MSI matched ALB in the cross-
shore profiles (Fig. 5d–f). The algorithm captured the transition to
deeper areas, evident in the steep slopes of both transects P1 (Fig. 5d)
and P2 (Fig. 5e). These findings confirm that SDB retrieved from Sen-
tinel-2 can provide valid bathymetric information including channels
and straits relevant to navigation. Depths over several bottom types
were present within this basin (Fig. 5c–g, seagrass, coral reef, un-
consolidated sediment), which indicate the model resolved different
substrate albedo, from vegetated to sandy or rocky bottoms. This con-
sistent performance is apparent between 10 and 12 km in P1 and P2,
where there is a large change from low to high values of reflectance at
490 nm (B02) associated with different bottom albedo (Stumpf et al.,
2003) of seagrass, coral reef and sandy bottom (Fig. 5c), without
comparable differences in the SDBred depths.

3.1.3. Dry Tortugas
The third tested region was the Dry Tortugas environment (Fig. 6a),

which is frequently characterized by clear waters compared to Key West
and West Palm Beach (Jones and Boyer, 1998). Severe cloud coverage

Table 2
Tunable parameters scale and offset (m1 and mo, respectively), and coefficient of determination (r2) defined for the vertical referencing of pSDBred (5 calibration
points) and pSDBgreen (6 calibration points) for images acquired on 2 March, 27 November, 7 December 2016, and 6 January 2017 in West Palm Beach. The same in
Key West on 8 February 2017 using 9 calibration points. The coefficients were retrieved using bands 445 nm and 490 nm for both SDB models. In addition, the
calibration parameters are indicated for the scene on 7 December 2016 after surface reflectance correction for Test 1 and Test 2 (see specific results in Section 3.2).

Ratio model Original pSDBgreen445 (ALB=0 18m) pSDBgreen490 (ALB=0 18m) pSDBred445 (ALB=0 6m) pSDBred490 (ALB=0 6m)

Parameter m0 m1 r2 m0 m1 r2 m0 m1 r2 m0 m1 r2

2 March 2016 44.2 46.7 0.96 54.7 55.5 0.89 7.5 7.3 0.99 8.5 7.9 0.99
27 November 2016 42.8 43.7 0.87 55.8 56 0.74 5.8 5.1 0.87 5.5 5 0.85
7 December 2016 56.2 57.5 0.91 81.8 80.8 0.81 10.5 9.5 0.94 11.8 10.2 0.95
6 January 2017 42.6 44.7 0.96 58.5 58.1 0.93 6.5 5.5 0.89 7.6 5.5 0.79
8 February 2017 42.9 50.3 0.86 67.7 70.5 0.85 5.2 5.4 0.9 5.9 5.8 0.83
Surface reflectance correction 7 Dec.
Test 1 44.4 45.8 0.89 59.9 59.1 0.84 5.9 5.4 0.88 7.2 6.5 0.8
Test 2 43.1 44.6 0.88 57.2 58.3 0.86 5.8 5.3 0.93 7.8 7 0.83

Table 3
Statistical analysis of the comparison between ALB and SDBgreen and SDBred derived from the MSI at 10m spatial resolution in West Palm Beach. The units of bias
and MedAE are meters. The band 445 nm was used in the ratio model.

Date March, 2 2016 November 27, 2016 December 7, 2016 January 6, 2017

SDBgreen Bias (m) MedAE (m) n Bias (m) MedAE (m) n Bias (m) MedAE (m) n Bias (m) MedAE (m) n

0–18m −0.82 0.78 76430 0.04 0.45 78741 0.06 0.51 78096 −0.24 0.58 76184
0–5m −0.93 0.85 16204 −0.15 0.46 16003 −0.58 0.70 14441 −0.32 0.78 14035
5–10m −0.69 0.72 20046 0.31 0.40 15667 0.29 0.29 19794 −0.21 0.54 23615
10–18m −0.83 0.78 40180 −0.03 0.48 47071 0.45 0.57 43861 −0.18 0.44 38534
SDBred
0–6m −0.06 0.4 19801 −0.37 0.36 18430 −0.1 0.39 20342 0.09 0.41 19441
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in this region limited the acquisition of a clear scene. Since the majority
of the ALB ranged only from 0 to 6m (Fig. 6c), SDBred was used in this
case as in Key West. The MSI bathymetric map for an image acquired on
8 February 2017 (Fig. 6d) provided good accuracy up to 6m with
MedAE of 0.22m and bias of −0.15m (N=419306). The calibration
parameters were 4.1 and 3.7 for offset and slope, respectively, using
five control points. The scatter against ALB (Fig. 6g) reflected accuracy
and minimum errors, where slight underestimation occurred in regions
of ALB>5m. The profiles in Fig. 6e and f further confirmed the good
performance of the ratio model over different bottom substrates, where
there is a large change from low to high values of reflectance at 490 nm
(B02) associated with different bottom albedo of seagrass, coral reef,

and sandy bottom (Fig. 6f), without comparable differences in the
SDBred depth (Fig. 6e).

3.2. Satellite-Derived Bathymetry for recursive retrieval

An analysis of SDB mapping focused on West Palm Beach (large
range of ALB) was conducted to determine the repeatability and con-
sistency of the approach. Each image in this site was tuned in-
dependently in the previous section 3.1.1. For recursive SDB retrieval,
consistency was examined by using only one generic tuning im-
plemented for all the images. The calibration between the pSDB values
and the chart sounding is a critical step in the SDB models,

Table 4
Statistical analysis of the comparison between ALB and SDBgreen and SDBred derived from the MSI at 10m spatial resolution in West Palm Beach. The units of bias
and MedAE are meters. The band 490 nm was used in the ratio model.

Date March, 2 2016 November 27, 2016 December 7, 2016 January 6, 2017

SDBgreen Bias (m) MedAE (m) n Bias (m) MedAE (m) n Bias (m) MedAE (m) n Bias (m) MedAE (m) n

0–18m −0.72 0.72 78264 −0.2 0.6 78699 0.13 0.76 74653 −0.55 0.77 73725
0–5m −0.9 0.86 14504 −0.99 0.95 14653 −1.37 1.4 10619 −1.25 1.27 12507
5–10m −0.69 0.7 20577 0.2 0.43 20776 −0.25 0.41 20776 −0.33 0.61 19744
10–18m −0.62 0.64 43183 0.18 0.54 43270 0.67 0.88 43258 −0.35 0.74 41474
SDBred
0–6m 0.21 0.51 19820 −0.23 0.3 18430 −0.25 0.38 20340 −0.13 0.5 19446

Fig. 5. (a) ALB in Key West indicating transects P1, P2 and P3, (b) SDBred derived from MSI for an image acquired on 8 February 2017 (using band 445 nm). White
pixels represent depths derived as situated above the sea surface or masked after ACOLITE processor, (c) benthic habitats of the Lower Keys and Key West by NOAA
(yellow, unconsolidated sediment; green, seagrass; orange, coral reef and hard bottom; blue, not classified), (d), (e), and (f) three profiles for ALB (black line), SDBred
(red line is using band 445 nm, magenta line is using band 490 nm), and reflectance of the 490 nm band Rrs490 (blue line) along P1, P2, and P3, respectively, (g) Red-
Green-Blue (RGB) composite of MSI on 8 February 2017 showing the three cross-shore profiles (P1-P3).
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Fig. 6. a) RGB composite derived from a MSI image acquired on 8 February 2017 in Dry Tortugas, b) benthic habitats from Franklin et al. (2003); red rectangle
indicates the study region for SDB, c) ALB; d) SDBred on 8 February 2017 (using band 490 nm); white pixels represent depths derived as situated above the sea
surface or masked after ACOLITE processor, e) depth transect of ALB (back line) and SDBred (red line), f) profile of the blue bands at 490 nm, g) scatter plot of ALB
against SDBred for depths 0–6m.

Table 5
Statistical analysis of the comparison between ALB and SDBgreen (using band 445 nm) derived from the MSI at 10m spatial resolution in West Palm Beach for March
2, November 27, and December 7, 2016. The calibration coefficients used for the generic vertical tuning (6 January 2017 as the reference image) are m0= 42.6 and
m1=44.7 (Table 2).

Date March 2, 2016 November 27, 2016 December 7, 2016

SDBgreen Bias (m) MedAE (m) n Bias (m) MedAE (m) n Bias (m) MedAE (m) n

0–18m −1.1 1.04 75969 1.42 1.32 80663 −0.71 0.8 81016
0–5m −1.12 1.02 14748 1.1 1.01 11804 −0.16 0.45 16918
5–10m −1.11 1.11 25527 1.49 1.41 14353 −0.64 0.7 27869
10–18m −1.03 1.02 35694 1.65 1.52 54506 −1.31 1.24 36229
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incorporating differences in water level (micro-tidal regime) and water
transparency conditions. For this examination, the 6 January 2017
scene was chosen as the reference, and its tuning coefficients were
applied to the other images (Table 5). While the error increased
slightly, the median error was still ∼1m for depths 0–18m compared
to the targeted tuning with median errors ∼0.5m (Table 3).

Except December 2016, all scenes had quite similar coefficients
(Table 2). The difference for the December 2016 scene can be asso-
ciated with a residual error after ACOLITE, probably due to residual
uncorrected aerosol. Residual surface reflectance is unlikely; No-
vember, December and January have the same sun angles and no re-
sidual surface reflectance was evident. A different aerosol type than
applied may have caused the December 2016 artifact. For other times of
year with higher sun angles, surface reflectance should be considered,
as this version of ACOLITE did not include a correction for surface re-
flectance or wave facets. To correct for residual aerosol signal before
SDB retrieval, two straightforward exercises were developed using the
image on 6 January 2017 as a reference and the image in December
2016 as the testing scene. The first one (Test1) corresponded to a pixel
by pixel subtraction of Rrs704 for December 2016 from all channels but
adding back in the mode of January 2017 (Stumpf and Pennock, 1989;
Hochberg et al., 2003), and the second (Test2) corresponded to a pixel
by pixel subtraction of 0.5*Rrs704 for December 2016 from all chan-
nels. The two approaches provided similar SDBgreen coefficients to the
reference scene (Table 2). The median errors ∼0.5 (Table 6) were
comparable between depth ranges and equivalent to the ones stated in
Tables 3 and 5. Similar results were obtained using the reflectance at
740 nm (Rrs740) instead of Rrs704 (not included here). Therefore, not
correcting for residual aerosol signal in the reflectance did allow de-
termination of depths. However, correcting for it increased consistency
in the calibration, permitting the use of a generic calibration across all
the scenes with similar sun angle.

3.3. Comparison of Sentinel-2A and 2B satellites

Previous analysis of SDB validation (Section 3.1 and 3.2) with ALB
were focused on Sentinel-2A satellite before Hurricane Irma reached
the Keys in September 2017, since intense resuspension and currents
may have modified shallow seabed morphology, confounding compar-
ison with the lidar survey. However, given that the first images of
Sentinel-2B in SF were obtained after Irma, additional imagery was
selected after September 2017 for examination of Sentinel-2A and 2B
consistency and similarity. Two clear scenes for each satellite were
selected in West Palm Beach and Dry Tortugas for SDBgreen and
SDBred evaluation, respectively, during the same period in 2017
(within ∼15 days of difference). The scatter plots indicate similar
performance between both MSI sensors with MedAE of 0.64 in West
Palm (Fig. 7a) and 0.26m in Dry Tortugas (Fig. 7b) lying on the 1:1
line. Slightly higher errors were encountered for these scenes in both
study locations (see calibration parameters and validation performance

in Table 7), which may be related to bottom erosion/sedimentation
after Irma not accounted in ALB. These results are encouraging for fu-
ture implementation of multi-sensor approaches with both MSI instru-
ments, thus confirming for first time, to the best of our knowledge, the
potential of applying Sentinel-2A and 2B as interchangeable satellites
for bathymetric mapping.

4. Discussion

This study shows the potential of Sentinel-2A/B imagery to suc-
cessfully map bathymetry at 10m spatial resolution over shallow op-
tical regions in South Florida with conditions of low turbidity (Jones
and Boyer, 1998). Accurate SDB products could be retrieved using the
ratio algorithm with both models, SDBred (ratio of the blue to red
bands) for depths up to 6m, and SDBgreen (ratio of the blue to green
bands) for depths to at least 18m (limit of validation data). SDBred was
sensitive in waters< 5–6m in the three study sites while SDBgreen
performed poorly at depths< 3m in West Palm Beach. Replacing the
green band with red should aid in retrieving depths in shallow highly
reflective waters. This approach was implemented by NOAA in the Atlas
of the shallow NW Hawaiian Islands (National Oceanic and
Atmospheric Administration-NOAA, 2003), where the blue to red ratio
substituted for the blue to green ratio algorithm for waters< 5m. The
overlapping depth range (3–5m) between both models can allow for
inter-comparison of bathymetric retrievals. The results also suggest that
a merged switching method would be appropriate in these environ-
ments with SDBred applied in shallow waters (< 5m) and SDBgreen in
deep waters (> 5m).

Bathymetry mapping with Sentinel-2A/B at 10m has an advantage
in comparison with Landsat-8 at 30m (Pe’eri et al., 2014; Pacheco
et al., 2015; Kabiri, 2017a), particularly in retrieving more features
(Hedley et al., 2018). The utility of Sentinel-2A/B is clearly observed in
Key West (Fig. 5) and Dry Tortugas (Fig. 6), where the scale of near-
shore complex geomorphological features such as the narrow channels
and steep slopes were mapped with the MSI. In addition, depths were
retrieved with errors< 1m in these areas with variable bottom types
(e.g., hard-bottom, soft-sediment and sandy bottom types, mainly car-
bonates, seagrass, and coral reef) (Fourqurean et al., 1992; Franklin
et al., 2003; Finkl and Warner, 2005).

The coastal blue band at 445 nm (B01) and the standard blue at
490 nm (B02) yielded similar performances. Slightly lower error was
encountered for band 445 nm; however, the 445 nm band has sub-
stantially lower raw resolution (60m), so there is little to be gained by
using it for routine mapping in these water depths. In addition, we have
also confirmed that ACOLITE produced a robust and consistent atmo-
spheric correction for both Sentinel-2A and 2B satellites over different
locations and scenes. Noise by MSI appeared enhanced for deeper wa-
ters. Some of this noise might be associated with the remaining noise or
possibly surface reflectance (specular reflection) not removed after the
median filtering applied to ACOLITE outputs. Minghelli-Roman et al.
(2009) suggested constant, random and quantization noises need to be
reduced as much as possible in order to obtain sufficient depth accuracy
from deeper waters. Scene surface reflection (NIR residual reflectance)
was implicitly removed from the SDB with the atmospheric correction.
However, directly removing the surface reflectance by a pixel-based
correction (similar to Hochberg et al., 2003 and Stumpf and Pennock,
1989) indicated that retuning the coefficients for this problem was not
necessary, with the same overall errors at different depth ranges (Tables
5-6).

The ratio transform required tuning of only two parameters. We
utilized available sounding data from several updated and reliable
NOAA charts to calculate the empirical coefficients, using only 5 to 10
points for each model (the original algorithm used 5 depths from ex-
isting paper charts – one estimated as zero). For practical application in
remote areas, this is a key benefit, especially where one tuning could be
applied across multiple scenes without increasing error above 1m. For

Table 6
Statistical analysis of the comparison between ALB and SDBgreen and SDBred
(using band 445 nm) in West Palm Beach in 7 December 2016. Test1 and Test2
corresponded to the surface reflectance correction described in the text. The
calibration coefficients are indicated in Table 2.

SDBgreen Test1 Test2

Bias (m) MedAE(m) Bias (m) MedAE (m)

0–18m −0.17 0.56 −0.18 0.52
0–5m −0.76 0.81 −0.65 0.81
5–10m −0.11 0.33 −0.19 0.33
10–18m 0.34 0.55 0.28 0.47
SDBred
0–6m 0.65 0.81 −0.095 0.35
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areas without any soundings, a satellite model may provide reference
data. A recent publication by the International Hydrographic
Organization (International Hydrographic Review, 2014) addressed the
need to improve the collection, quality and availability of hydrographic
data worldwide, while monitoring and rectifying possible deficiencies
and shortcomings that are presented on the charts. In the opinion of the
IHO, shallow water bathymetry derived from multi-spectral imagery
should be considered as a potential technology for obtaining bathy-
metry for charting purposes in areas where existing surveys are poor or
non-existent. This work indicates that an existing calibration can be
used for recursive mapping in one region. Evaluating the application of
existing calibrations to new sites will be an important area of research
in order to apply the SDB to regions where soundings are rare.

The Sentinel-2 mission specification of 5-day revisit at the Equator
offers a new capability in routine Earth Observation. Both twin sa-
tellites yield a major number of images, which will be helpful for en-
hancing SDB estimations in regions with severe cloud coverage, ice
cover or sun glint issues. Casal et al. (2019) used Sentinel-2A data in
two study areas of the Irish coast with RMSE ∼1.4m for depths up to
10m, suggesting that atmospheric correction and water column con-
ditions proved to be key factors in the bathymetric derivation. A recent
study using the geospatial platform of the Google Earth Engine (GEE)
estimated SDB with Sentinel-2A in three sites in the Eastern Medi-
terranean with RMSE ∼1.5m (Traganos et al., 2018). In addition, a
bathymetric retrieval algorithm developed to a subset of Sentinel-1 over
the North Sea demonstrated the suitability of the technique in working
with Synthetic Aperture Radar (SAR) data, revealing the same pattern
of bathymetric features at an initial water depth of around 15–25m
(Stewart et al., 2016). Our demonstration of interchangeable use of the
two satellites for SDB mapping is critical to successful routine mon-
itoring. The Sentinel-2 constellation will benefit temporal studies re-
quiring yearly or more frequent update of bathymetric data in rapidly
varying aquatic systems such as rivers, tidal channels, underwater sand
dunes, dredged ports, or after the passage of hurricanes/tropical storms.
Pe’eri et al. (2014) already demonstrated multi-temporal SDB ap-
proaches produced better monitoring data quality as well as allowed
error analysis. This methodology should be applicable to very high
resolution satellites (Stumpf et al., 2003; Eugenio et al., 2015;

Hamylton et al., 2015; Halls and Costin, 2016), which may allow in-
tegration of these sensors with the more routine Sentinel-2 products.

5. Conclusions

The results of this study demonstrate the capability of Sentinel-2
twin mission in generating essential bathymetric information at 10m
spatial resolution in three different sites. The atmospheric correction by
means of ACOLITE software and the use of the ratio model enable ex-
cellent bottom mapping to at least 18m with error ∼0.5m.
Repeatability and accuracy of SDB retrievals has been also verified
through these approaches, where few calibration points (5–10) are
needed from chart soundings. MSI can capture small-scale features,
such as tidal channels, straits relevant to navigation or steep slopes, due
to its fine spatial resolution. These findings are encouraging for future
implementation of multi-sensor analysis, addressing the potential of
using Sentinel-2A and 2B as interchangeable satellites for SDB mapping.

This approach represents a new perspective for remotely sensed
seabed topography extraction with high level of accuracy and with the
advantages of a fast, flexible, and economically advantageous solution
over broad areas. Consequently, the Sentinel-2 set of derived informa-
tion will generate reciprocal benefit for improved competiveness of
coastal and inland bathymetric products and their future evolution,
contributing to the advancements for environmental management,
monitoring, modelling, and for scientific purposes, especially in remote
areas and developing countries.
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